您好、欢迎来到现金彩票网!
当前位置:国民彩票app下载 > 高斯式分布 >

经典教材《模式识别和机器学习》官方免费下载!

发布时间:2019-05-01 19:04 来源:未知 编辑:admin

  最经典的机器学习教材之一、大牛Christopher Bishop所著的《

  今天,微软剑桥研究院在官方推特放出一个大好消息:最经典的机器学习教材之一、Christopher Bishop所著的“Pattern Recognition and Machine Learning”(模式识别与机器学习)公开了官方的免费下载版本!

  这本教材提供了对模式识别和机器学习领域的全面介绍,面向的读者是本科生和低年级博士生,以及研究人员和从业人员。

  出版于2006年,本书是这个领域的第一本机器学习教科书,全面涵盖了该领域最近的发展,如概率图模型和确定性推理方法,并强调现代贝叶斯观点。本书适用于机器学习、统计学、计算机科学、信号处理、计算机视觉、数据挖掘、生物信息学等课程。

  作为名副其实的经典教材,无数机器学习研究者曾研读并受益于它。因此,开放下载的消息一出,立刻引起许多研究人员的推荐和赞誉。

  这本关于机器学习基础的经典书籍现在可以从微软官方免费下载PDF版本了!多年来,我从这本书中学到了很多,我觉得很多材料现在仍然是相关的。练习的答案似乎也能获得!

  这是一个非常赞的资源。它是在深度学习革命之前写作的,因此它为深度学习提供了很好的背景知识。我博士第一年的大部分时间研读这本书。

  Christopher Bishop还是爱丁堡大学计算机科学教授,剑桥大学达尔文学院 Fellow。2004年当选为英国皇家工程院院士,2007年当选为爱丁堡皇家学会院士,2017年当选为英国皇家学会院士。

  在微软研究院,Chris带领世界领先的工业研究和开发团队,专注于机器学习和人工智能,并在云基础设施、安全、工作场所生产力、计算生物学和医疗保健领域创造突破性技术。

  Chris在牛津大学获得物理学学士学位,在爱丁堡大学获得理论物理学博士学位,毕业论文关于量子场论。从那时起,他开始对模式识别产生兴趣,并成为AEA Technology应用神经计算中心的负责人。随后,他被选为阿斯顿大学计算机科学与应用数学系主任,并在阿斯顿大学成立并领导了神经计算研究小组。

  线性基函数模型、偏置方差分解、贝叶斯线性回归、贝叶斯模型比较、The Evidence Approximation、固定基函数的局限性

  前馈神经网络、网络训练、误差反向传播、Hessian矩阵、神经网络的正则化、混合密度网络、贝叶斯神经网络

  变分推断、高斯的变分混合、变分线性回归、指数族分布、局部变分方法、变分logistic回归、Expectation Propagation

  基本采样算法、马尔科夫链蒙特卡洛、吉布斯采样、切片采样、混合蒙特卡洛算法、估计划分函数

  贝叶斯模型平均法,Committees,Boosting,基于树的模型,条件混合模型

http://catacurian.net/gaosishifenbu/103.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有