您好、欢迎来到现金彩票网!
当前位置:国民彩票app下载 > 高斯式分布 >

高斯定理的表达式

发布时间:2019-07-12 23:31 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部关于高斯定理,最形象化的解释是:你把每个正点电荷想像成蒲公英的中心点,电场线想像那些毛,不过这时候毛要无限沿长到无穷远或者中止于另一个“负”的薄公英(对应负电荷),然后每个蒲公英发出的毛的数量与对应的电荷成正比。

  好了,然后你任意做一个闭曲面看看有什么结果,如果闭曲面包含的体积中没有蒲公英,那么穿进来任意一根毛都会在另外的地方穿出去。如果曲面内有电荷,那得分三种情况:

  如果只有正电荷,那么你会发现有很多毛穿出曲面,并且再也没有穿回来,其量与电荷成正比。但没有穿进来就不出去的毛。而如果曲面外面有电荷的话,则可能存在一些毛穿进来并穿穿出去(但也可能没有!)。

  如果负只有电荷,那么你会发现有很多毛穿进曲面,并且结束于“负”蒲公英,其量与电荷成正比。但没有穿出去就不回来的毛。像前面一样,如果曲面外面有电荷的话,则可能存在一些毛穿进来并穿穿出去(但也可能没有!)。

  如果即有正电荷电有负电荷,那就复杂了,即可能有从外面穿进来中止于负电荷的,又可能有穿出去就不回来的毛。有些则从曲面内的正电荷穿出,穿出曲面,又穿回来,中止于曲面内的负电荷;有些则从正电荷发出没有穿出曲面就中止于曲面内的负电荷。像前面一样,如果曲面外面有电荷的话,则可能存在一些毛穿进来并穿穿出去(但也可能没有!)。

  但任何情况下,穿出去与穿出来的毛数之差,总正比于曲面电荷代数和,如果你细分到最小电荷话,可以说成正比于正蒲公英减去负蒲公英数——这就是静电场的高斯定理。

  静电场中的高斯定律用积分的方式是∮sDdS=∫vρvdV=Q,表明从封闭面发出的总电通量在数值上等于包含在该封闭面内的静止电荷;利用散度定理有∫v▽DdV=∫vρvdV,则得出微分形式是▽D=ρv,物理意义是:空间任何存在正电荷密度的点都发出电通量线,如果电荷密度为负值,电通量线指向电荷所在的点。 也可写为▽E=ρv/ε。

http://catacurian.net/gaosishifenbu/692.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有